
COMPUTER SYSTEMS ARCHITECTURE FINAL PROJECT, FALL 2013 1

Cache Simulator
Lucas Herrera and Doug Slater

Abstract—This paper outlines the design and implementation
of a cache simulator that demonstrates the performance of a
cache given cache size, block size, associativity, and write policy.
With the impact of a cache design on the execution of a piece
of code, it is beneficial to rapidly test the code using a cache
simulator to understand the affects of different cache designs.
After evaluating the simulation results, a developer can make
the necessary adjustments to the cache design or the instruction
order.

Keywords—cache simulator, write-back, write-through, associa-
tivity

I. INTRODUCTION

INTEGRATED cache memory allows a processor to speed
up memory accesses, and mitigate the bottlenecks asso-

ciated with reading and writing from main memory. Three
types of cache memory exist on desktop and server systems,
an instruction cache, data cache, and a translation lookaside
buffer. The functional unit that comprises these different cache
types are known as cache entries.

II. BACKGROUND AND MOTIVATION

A. Cache Entries
Cache entries are characterized by the data in the entry, the

address (tag) from which the data was copied, and flag bits
that indicate the validity of the data. The data is transferred
between memory and cache in blocks called cache lines. The
tag contains a semiunique portion of the memory address.
When a read or write is executed, the cache is checked first. If
the data is in the cache, a cache hit occurs, and the processor
immediately uses the cache line. Otherwise, a cache miss
occurs, and the cache allocates a new entry, the data is copied,
and then the processor uses the data in the cache.

B. Replacement Policies
In order to make room for a new entry on a cache miss,

the cache may have to evict an existing entry. The method
that determines the replacement is known as the replacement
policy. The best policy will remove the entry that is least likely
to be used in the future. Obtaining this goal wholly depends
on the instruction set, and there is no perfect way to predict
this. One popular replacement policy removes the least recently
used cache entry.

C. Write Policies
If data is written to cache, it must also be written to main

memory. The method of writing to main memory is known as
the write policy. There are basically two policies to execute the
main memory writes. Write-through policy means that every

Fig. 1: Sample.din, a trace file that the simulator uses to
track the cache performance

write to the cache causes a write to the main memory. Write-
back policy means that the cache tracks which locations have
been written over, and writes occur upon eviction of that data.

D. Associativity
Since the cache is smaller than the main memory, a rela-

tionship is needed to dictate how the cache is organized. In
a fully associative cache there is no predictable relationship,
and the write policy is free to evict and replace any entry
that it wishes. A direct mapped cache dictates that every
address in main memory has a specific place in the cache
that it must be placed. Most elements implement an N-way
set associative policy, which combines the benefits of these
policies by incorporating the flexibility of fully associative,
with the predictive capabilities of

E. Motivation
A cache simulator allows a developer to run code on

different memory environments to determine which parameters
and design will provide the best performance.

III. SIMULATOR DESIGN

Although less sophisticated, the simulator has been designed
with the Dinero cache simulator in mind. There are no external
code dependencies, and the simulator accepts .DIN files as
input. The simulator has been developed in Python to allow



COMPUTER SYSTEMS ARCHITECTURE FINAL PROJECT, FALL 2013 2

Fig. 2: Figure showing the simulator output tracking the
performance of the cache design

cross-platform execution. The simulator is written in four class
files.

1) Clock.py contains clock cycle counter shared between
memory and clock

2) Memory.py contains RAM simulation
3) Cache.py contains the CPU cache
4) CacheSim.py contains the simulation reads parameters

and reads simulation file.
These four classes comprise the entire cache simulation and

facilitate the flexibility to vary all of the design parameters.

A. Features
The cache simulator is flexible by design and offers several

parameters that can be varied to find the most effective cache
design. The replacement policy used in the cache simulator is
a least recently used policy.The associativity can be directly
mapped or set associative. The set associativity can be orga-
nized by 2, 4, or 8 block sets. The simulator offers both write-
through and write-back policies that account for the penalties
associated with either policy. The memory system is organized
in a non-layered hierarchy where the one cache interacts with
the main memory directly. The block size and cache size are
variable by powers of two. This allows the developer to more
accurately represent the cache system they desire to simulate.
Furthermore, the instruction cache and data cache are separate.
The simulator does not actually move data as that is not
necessary given the variable miss penalty parameter.

Running simulations with different cache policies, the de-
veloper will be able to see which cache design will allow the
code to execute in the least amount of cycles. As processor
frequencies, which vary across different processors, will dictate
the runtime of the code fragment, clock cycles are the best
measure of performance for a cache design.

IV. SIMULATOR OUTPUT

Given the input .DIN file, the simulator will output several
metrics that indicate the performance of the cache design. The
output includes:

• parameters: the design characteristics of the cache,
• cycles per fetch: the average cycles to fetch each instruc-

tion,

• hits: the number of times a fetch executed without
interacting with the main memory, and

• misses: the number of times a fetch had to interact with
main memory.

By comparing the output information, it is easy to see
how a design performs for each input file. Altering the cache
characteristics and policies will allow a developer to decide
what cache system is best suited for the needs of the code.


